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Observation of Dirac monopoles in a synthetic
magnetic field
M. W. Ray1, E. Ruokokoski2, S. Kandel1{, M. Möttönen2,3 & D. S. Hall1

Magnetic monopoles—particles that behave as isolated north or
south magnetic poles—have been the subject of speculation since
the first detailed observations of magnetism several hundred years
ago1. Numerous theoretical investigations and hitherto unsuccess-
ful experimental searches2 have followed Dirac’s 1931 development
of a theory of monopoles consistent with both quantum mechanics
and the gauge invariance of the electromagnetic field3. The existence
of even a single Dirac magnetic monopole would have far-reaching
physical consequences, most famously explaining the quantization
of electric charge3,4. Although analogues of magnetic monopoles
have been found in exotic spin ices5,6 and other systems7–9, there has
been no direct experimental observation of Dirac monopoles within
a medium described by a quantum field, such as superfluid helium-3
(refs 10–13). Here we demonstrate the controlled creation14 of Dirac
monopoles in the synthetic magnetic field produced by a spinor
Bose–Einstein condensate. Monopoles are identified, in both experi-
ments and matching numerical simulations, at the termini of vortex
lines within the condensate. By directly imaging such a vortex line,
the presence of a monopole may be discerned from the experimental
data alone. These real-space images provide conclusive and long-
awaited experimental evidence of the existence of Dirac monopoles.
Our result provides an unprecedented opportunity to observe and
manipulate these quantum mechanical entities in a controlled
environment.

Maxwell’s equations refer neither to magnetic monopoles nor to the
magnetic currents that arise from their motion. Although a simple
symmetrization with respect to the electric and magnetic fields, respect-
ively E and B, leads to equations that involve these magnetic charges,
it also seemingly prevents their description in terms of the familiar
scalar and vector potentials, respectively V and A, alone. Because the
quantum mechanical Hamiltonian is expressed in terms of potentials,
rather than electromagnetic fields, this modification immediately leads
to serious theoretical challenges.

In a celebrated paper that combined arguments from quantum
mechanics and classical electrodynamics3, Dirac identified electromag-
netic potentials consistent with the existence of magnetic monopoles.
His derivation relies on the observation that in quantum mechanics
the potentials V and A influence charged-particle dynamics either
through the Hamiltonian or, equivalently, through modifications of
the complex phase of the particle wavefunction. Armed with these
equivalent perspectives, Dirac then considered the phase properties of
a wavefunction pierced by a semi-infinite nodal line with non-zero
phase winding. He discovered that the corresponding electromagnetic
potentials yield the magnetic field of a monopole located at the end-
point of the nodal line. The vector potential in this case also exhibits a
nonphysical line singularity, or ‘Dirac string’, that terminates at the
monopole.

We experimentally create Dirac monopoles in the synthetic electro-
magnetic field that arises in the context of a ferromagnetic spin-1 87Rb
Bose–Einstein condensate (BEC) in a tailored excited state14. The BEC

is described by a quantum mechanical order parameter that satisfies a
nonlinear Schrödinger equation, and the synthetic gauge potentials
describing a north magnetic pole (Fig. 1) are generated by the spin
texture. This experiment builds on studies of synthetic electric and
magnetic fields, respectively E* and B*, in atomic BECs, which is an
emerging topic of intense interest in the simulation of condensed-
matter systems with ultracold atoms15,16. Unlike monopole experiments
in spin ices5,6, liquid crystals7, skyrmion lattices9 and metallic ferro-
magnets8, our experiments demonstrate the essential quantum fea-
tures of the monopole envisioned by Dirac3.

Physically, the vector potential, A*, and synthetic magnetic field,
B1~B+|A1, are related to the superfluid velocity, vs, and vorticity,
V 5 = 3 vs, respectively. (Here B denotes Planck’s constant divided by
2p.) Our primary evidence for the existence of the monopole comes
from images of the condensate density taken after the creation of these
fields (Figs 2 and 3), which reveal a nodal vortex line with 4p phase
winding terminating within the condensate. The images also display a
three-dimensional spin structure that agrees well with the results of
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Figure 1 | Schematic representations of the monopole creation process and
experimental apparatus. a–c, Theoretical spin orientation (red arrows) within
the condensate when the magnetic field zero (black dot) is above (a), entering
(b) and in the middle of (c) the condensate. The helix represents the singularity
in the vorticity. d, Azimuthal superfluid velocity, vs (colour scale and red
arrow), scaled by equatorial velocity, ve. Black arrows depict the synthetic
magnetic field, B*. e, Experimental set-up showing magnetic quadrupole (Q)
and bias field (BX, BY and BZ) coils. Red arrows (OT) show beam paths of the
optical dipole trap, and blue arrows indicate horizontal (H) and vertical (V)
imaging axes. Gravity points in the 2z direction.

3 0 J A N U A R Y 2 0 1 4 | V O L 5 0 5 | N A T U R E | 6 5 7

Macmillan Publishers Limited. All rights reserved©2014

www.nature.com/doifinder/10.1038/nature12954


numerical simulations (Fig. 4). We analyse these findings and discuss
their implications below.

The spinor order parameter corresponding to the Dirac mono-
pole14,17 is generated by an adiabatic spin rotation in response to a
time-varying magnetic field, B(r, t). Similar spin rotations have been
used to create multiply quantized vortices18 and skyrmion spin textures19.
The order parameter Y(r, t) 5 y(r, t)f(r, t) is the product of a scalar
order parameter, y, and a spinor, f~ fz1,f0,f{1ð ÞT¼^ fj i, where
fm 5 Æmjfæ represents the mth spinor component along z. The con-
densate is initially spin-polarized along the z axis, that is, f 5 (1, 0, 0)T.
Following the method introduced in ref. 14, a magnetic field
B r,tð Þ~bq xx̂zyŷ{2zẑð ÞzBz tð Þẑ is applied, where bq . 0 is the
strength of a quadrupole field gradient and Bz(t) is a uniform bias
field. The magnetic field zero is initially located on the z axis at
z~Bz 0ð Þ=(2bq)?Z, where Z is the axial Thomas–Fermi radius of the
condensate. The spin rotation occurs as Bz is reduced, drawing the
magnetic field zero into the region occupied by the superfluid.

Ideally, the condensate spin adiabatically follows the local direction
of the field (Fig. 1a–c). Our numerical analysis indicates, and both
simulations and experiment confirm, that the fraction of atoms under-
going non-adiabatic spin-flip transitions is of order 1% for our experi-
mental parameters. The spin texture in the adiabatic case is conveniently

expressed in a scaled and shifted coordinate system with x9 5 x,
y9 5 y, z9 5 2z 2 Bz/bq, corresponding derivatives =9, and spherical
coordinates (r9, h9, Q9). This transformation scales the z axis by a fac-
tor of two and shifts the origin of coordinates to coincide with the
zero of the magnetic field. The applied magnetic field is then
B~bq x0x̂0zy0ŷ0{z0ẑ0ð Þ. As Bz is reduced, each spin rotates by an
angle p2 h9 about an axis n̂ r0,h0,Q0ð Þ~{x̂0 sin Q0zŷ0 cos Q0. This
spatially dependent rotation leads to a superfluid velocity

vs~
B

Mr0
1zcos h0

sin h0
Q̂0 ð1Þ

and vorticity

V~{
B

Mr02
r̂0z

4pB
M

d x0ð Þd y0ð ÞH z0ð Þr̂0 ð2Þ

where M is the atomic mass, d is the Dirac delta function and H is the
Heaviside step function. The vorticity is that of a monopole attached
to a semi-infinite vortex line singularity, of phase winding 4p, extend-
ing along the 1z9 axis.

The synthetic vector potential arising from the spin rotation can be
written as A1~{Mvs=B, with the line singularity in A* coincident
with the nodal line in Y. However, this singularity is nonphysical,
because it depends on the choice of gauge and can even be made to
vanish20 (Supplementary Information). The synthetic magnetic field of
the monopole is therefore simply

B1~
B

r02
r̂0 ð3Þ

The fields vs and B* are depicted in Fig. 1d.
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Figure 2 | Experimental creation of Dirac monopoles. Images of the
condensate showing the integrated particle densities in different spin
components as Bz,f is decreased. Each row a–f contains images of an individual
condensate. The leftmost column shows colour composite images of the
column densities taken along the horizontal axis for the three spin states
{ | 1æ, | 0æ, | 21æ}; the colour map is given in f. Yellow arrows indicate the location
of the nodal lines. The rightmost three columns show images taken along the
vertical axis. The scale is 285mm 3 285mm (horizontal) and 220mm 3 220mm
(vertical), and the peak column density is ~np~1:0|109 cm{2.
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Figure 3 | Comparison between experiment and simulation. Experimental
(a, c) and simulated (b, d) condensate particle densities with the monopole near
the centre of the condensate. Comparisons along the vertical axis are shown
in rows a and b, and those along the horizontal axis are shown in rows c and
d. The hole observed in the | 21æ component (row a) is discernible as a line of
diminished density in row c. The field of view is 220mm 3 220mm in a and
b and 285mm 3 285mm in c and d. The colour composite images and ~np are as
in Fig. 2.

RESEARCH LETTER

6 5 8 | N A T U R E | V O L 5 0 5 | 3 0 J A N U A R Y 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014



The experimental set-up21 is shown schematically in Fig. 1e. The
optically trapped 87Rb BEC consists of N < 1.8(2) 3 105 atoms in the
jF 5 1, m 5 1æ ; j1æ spin state, where the uncertainty reflects shot-
to-shot variations and the calibration of the detection system. The
calculated radial and axial Thomas–Fermi radii are R 5 6.5mm and
Z 5 4.6mm, respectively, and the corresponding optical trap frequen-
cies are respectively vr < 2p3 160 Hz and vz < 2p3 220 Hz. Four
sets of coils are used to produce bq, Bz and the transverse magnetic
field components Bx and By, which are used to guide the applied
magnetic field zero into the condensate. At the beginning of the mono-
pole creation process, the bias field is Bz 5 10 mG. The quadrupole
field gradient is then linearly ramped from zero to bq 5 3.7 G cm21,
placing the magnetic field zero approximately 30mm above the con-
densate. The field zero is then brought down into the condensate by
decreasing Bz linearly to Bz,f at the rate _Bz~{0:25 G s{1. We call this
the ‘creation ramp’.

The atomic density of each spinor component jmæ is imaged as estab-
lished by the local spin rotation during the creation ramp (Methods).
As the field zero passes through the condensate (Fig. 2a–f), the distri-
bution of particles in the three spin states changes in a manner indi-
cative of the expected spin rotation shown in Fig. 1. The nodal line
appears in the images taken along the vertical axis as holes in the j21æ
and j0æ components, and in the side images as regions of reduced
density extending vertically from the top of the condensate towards,
but not through, the j1æ component. This nodal line extends more
deeply into the condensate as Bz,f is reduced. Ultimately it splits into
two vortex lines (Fig. 2f; see also Extended Data Fig. 1)—the character-
istic signature of the decay of a doubly quantized vortex22—illustrating
its 4p phase winding.

We compare the experimental images of the vertically (Fig. 3a) and
horizontally (Fig. 3c) imaged density profiles with those given by numer-
ical simulations (Fig. 3b, d) in which the monopole is near the centre of
the condensate. The simulation data are obtained by solving the full
three-dimensional dynamics of the spinor order parameter (Methods).
The locations of the doubly quantized and singly quantized vortices
in spinor components j21æ and j0æ are visible in the experimentally
acquired density profiles, as are other structures discernible in the
images obtained from the numerical simulations. The observed ver-
tical spatial separation of the spinor components (Fig. 3c) confirms
that the vortex line terminates within the bulk of the condensate.

The quantitative agreement between experiment and simulation is
apparent in Fig. 4, which shows cross-sections of the density profiles
taken through the centre of the condensate. The differences observed
in the peak densities (Fig. 4a) of the experimental (solid lines) and
simulated (dashed lines) data are due to effects not taken into account
in the simulation, such as three-body losses that were observed to be
,10% in the experiment. To show their effect, we have scaled the sim-
ulated data accordingly (dotted lines). Noting the absence of free para-
meters, the experimental data are in very good agreement with the
numerical simulation.

We also show the fraction of the condensate in each spinor com-
ponent for different vertical monopole locations within the condensate
(Fig. 4b), including data from images in which the nodal line of the
order parameter does not necessarily coincide with the z axis. The
physical observable is the position of the centre of mass of the j0æ
component, z0, relative to the centre of mass of the whole condensate,
zc. Again, we find that the experiments and simulations are in very
good quantitative agreement without any free parameters.

An alternative description of the origins of the velocity and vorticity
profiles (equations (1) and (2)) can be presented in terms of the motion
of the monopole (Supplementary Information). As the monopole
approaches the condensate, it is a source not only of the synthetic
magnetic field, B* (equation (3)), but also of an azimuthal synthetic
electric field, E*, described by Faraday’s law, +0|E1~{LB1=Lt. Each
mass element of the superfluid is given a corresponding azimuthal
acceleration by E*. The monopole motion thereby induces the appro-
priate superfluid velocity and vorticity profiles within the condensate,
in a manner similar to the induction of electric current in a super-
conducting loop by the motion of a (natural) magnetic monopole23. In
our case, the condensate itself is the monopole detector, analogous to
the superconducting loop. Being three-dimensional, however, it is
sensitive to the entire 4p solid angle surrounding the monopole.

The creation and manipulation of a Dirac monopole in a controlled
environment opens up a wide range of experimental and theoretical
investigations. The time evolution and decay14 of the monopole are of
particular interest because it is not created in the ground state24.
Interactions between the monopole and other topological excitations,
such as vortices, present another fundamental research avenue with a
variety of unexplored phenomena. There exists also the possibility of
identifying and studying condensate spin textures that correspond to
other exotic synthetic electromagnetic fields, such as that of the non-
Abelian monopole25. Finally, the experimental methods developed in
this work can also be directly used in the realization of a vortex pump26,
which paves the way for the study of peculiar many-body quantum
states, such as those related to the quantum Hall effect27.
Note added in proof: The effects of the Lorentz force arising from an
inhomogeneous synthetic magnetic field have recently been observed
in condensate dynamics28.

METHODS SUMMARY
Imaging. After the creation ramp, we non-adiabatically change Bz from Bz,f to a
large value (typically several hundred milligauss) to project the condensate spinor
components {jmæ} into the approximate eigenstates of the Zeeman Hamiltonian
while preserving the monopole spin texture. We call this the ‘projection ramp’. The
condensate is then released from the trap and allowed to expand for 22.9 ms. The
three spin states are separated along the x axis during the expansion by a 3.5-ms
pulse of the magnetic field gradient with the magnetic bias field pointing in the
x direction. We take images simultaneously along the horizontal and vertical axes.
Data. The images shown in Figs 2 and 3 are selected from among several dozen
similar images taken under identical conditions, and hundreds of similar images
taken under similar conditions (see also Extended Data Fig. 2 for representative
examples). Not every experimental run yields an image of a monopole, because
drifts in the magnetic field and location of the optical trap cause the magnetic field
zero to pass outside the BEC. Under optimal conditions, five to ten consecutive
images may be taken before drifts require adjustment of the bias fields.
Simulation. We solve the full three-dimensional Gross–Pitaevskii equation with
simulation parameters chosen to match those of the experiment, excepting the
effects of three-body losses and the magnetic forces arising from the gradient
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Figure 4 | Quantitative comparison between experiment and simulation.
a, Experimental (solid lines) and simulated (dashed and dotted lines) column
densities ~n of the condensate from the vertical images in Fig. 3, with cross-
sections taken as shown in the insets. Dotted lines show the approximate effect
of three-body losses (see text). The origin x 5 0 coincides with the hole in state
| 0æ. b, Fractions in each spin state for different positions of the centre of mass of
the | 0æ state (z0) relative to that of the condensate (zc), in units of the axial
Thomas–Fermi radius (Z). Solid lines are simulated values and points marked
with letters and numbers correspond to panels a–e of Figs 2 and 3, respectively.
Typical error bars that reflect uncertainties in the calibration of the imaging
system are shown for several points.
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during the spin state separation just before imaging. To show the effects of the
expansion, we present integrated particle densities of the condensate from the
numerical simulation immediately after the creation ramp, and while the magnetic
field zero is still in the condensate, in Extended Data Fig. 3. The volume considered
varies from 20|20|20a3

r to 320|320|320a3
r , where ar~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=Mvr

p
<0:9 mm

is the radial harmonic oscillator length. The size of the computational grid changes
from 180 3 180 3 180 to 1,024 3 1,024 3 1,024 points.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Condensate production. Condensates are produced in the jF 5 2, m 5 2æ spin
state of 87Rb by sequential steps of evaporative cooling, first in a time-averaged,
orbiting potential magnetic trap and subsequently in a 1,064-nm crossed-beam
optical dipole trap. The two evaporation stages are used to avoid the introduction
of vortices that occasionally arise during the transfer of a condensate from the
magnetic trap to the optical trap. The radial and axial optical trap frequencies at
the end of the evaporative cooling process are ,110 and ,130 Hz, respectively. A
subsequent microwave Landau–Zener sweep drives the condensate into the
jF 5 1, m 5 1æ state.

After having established Bz 5 10 mG, the trap frequencies are increased to
vr < 2p3 160 Hz and vz < 2p3 220 Hz before the quadrupole field is turned
on. The tighter trap better resists the magnetic forces exerted by the field gradient,
but it also limits the condensate lifetime to approximately 500 ms as a result of
three-body loss processes. At the end of the experiment, N < 1.6 3 105, indicating
typical three-body losses of ,10%.
Magnetic field control. The x, y and z axes are defined by the orientation of the
magnetic field coils BX, BY and BZ, as shown in Fig. 1e. The magnetic fields are
calibrated to within ,1 mG using Majorana spectroscopy, in which the field
component along the z axis is rapidly (15 G s21) reversed and the fraction of atoms
thereby transferred non-adiabatically to the j21æ state is measured as a function of
the currents applied to the BX and BY field coils. Maximum transfer occurs when
the transverse field components are minimized. The field along the z axis is simi-
larly calibrated by rapidly reversing the field component along the x axis.

Precise magnetic field control at the location of the condensate is one of the
most challenging aspects of the experiment. The condensate presents a small target
(,7mm) into which the field zero must be guided. The creation process is there-
fore quite sensitive to drifts in the relative position of the optical trap and the
position of the field zero, limiting our ability to generate large sequential data sets
without compensatory adjustments. Such drifts may be caused either by fluctuat-
ing background fields or by mechanical instabilities in the trapping beam optics.
With bq 5 3.7 G cm21, a 1-mG change in the radial field corresponds to a trans-
lation of the zero by 1.4mm, or 25% of the condensate radius—enough to disturb
the creation of the monopole. Similar shifts alter the vertical bias field required to
bring the field zero into the condensate.

An additional complication is that the centre of the optical trap and the physical
centre of the gradient coils do not in general coincide, and can drift with respect to
one another. Relative to the centre of the gradient coils, the condensate can be
offset horizontally by as much as 14mm, and downwards by as much as ,25mm.
Adiabatic spin rotation. As Bz changes during the monopole creation process, the
condensate spin ideally remains in the strong-field seeking state (SFSS), that is, the
minimum-energy eigenstate of the local Zeeman Hamiltonian. At the field zero,
however, the local Zeeman term of the Hamiltonian vanishes and non-adiabatic
spin transitions to the neutral and weak-field seeking states become inevitable.
Neglecting the kinetic energy related to spin rotations and the weak spin–spin
interactions in the condensate, the spatially dependent probability of successful
adiabatic spin rotation when the homogeneous bias field is inverted from large
positive values to large negative values can be approximated within the three-level
Landau–Zener model by29

Pad x,yð Þ~ 1{exp
pmBb2

q x2zy2ð Þ
4B _Bz

�� ��
" #( )2

ð4Þ

where mB is the Bohr magneton. The fraction of particles remaining in the SFSS can
be approximated by an average of equation (4) weighted by a fixed particle density,
�n rð Þ, as

Pad~

Ð
�n rð ÞPad rð Þd3rÐ

�n rð Þd3r
ð5Þ

Applying equations (4) and (5) to the initial vortex-free density distribution deter-
mined by solving the Gross–Pitaevskii equation with the parameter values extracted
from the experiments, we obtain Pad 5 98%. The doubly quantized vortex gener-
ated during the field inversion reduces the number of atoms in precisely the region
where the undesired spin flips are most probable. For a density distribution that
includes the doubly quantized vortex along the z axis, equations (4) and (5) yield
Pad 5 99%. Full numerical simulations of the creation of the doubly quantized
vortex confirm that 99% of the particles remain in the SFSS.

Experimentally, Pad is controlled by bq and _Bz . Increasing bq results in stronger
magnetic forces on the condensate due to the gradient, which must remain small
relative to those exerted by the optical trap so as not to perturb the condensate
position extensively. The strength of the optical trap, however, cannot itself be
increased without compromising both the size of the condensate and its lifetime.
Choosing bq 5 3.7 G cm21 was found convenient in this respect.

Decreasing _Bz , on the other hand, results in lengthier exposures of the BEC to
magnetic field noise that can possibly induce undesirable spin transitions. The
noise associated with the power mains (at frequencies that are odd-integer (n)
multiples of 60 Hz) is the most serious, being resonant at a field of n 3 85mG. The
choice _Bz~{0:25 G s{1 ensures that the resonance condition is passed in less
time than a single oscillation period of the noise, at least up to n 5 7. The effect of
this noise is merely to distort slightly the path traced by the field zero during the
creation ramp.

With the experimental parameters described above, we find that a negligible
number of atoms are excited out of the SFSS after the field zero is moved fully
through the condensate. Only when we increase the ramp rates by an order of
magnitude do we find a discernible fraction of the atoms in the weak-field seeking
state. This is consistent with the simulations and the calculation of Pad. We con-
clude that non-adiabatic spin flips are not important in the monopole creation
process with the parameters used in the experiments, and that the Landau–Zener
model describes this phenomenon well.
Imaging. At the end of the creation ramp, Bz is rapidly decreased (in 0.040 ms)
until Bz=Bz,fj j?1, a stage we call the ‘projection ramp’. This non-adiabatic field
ramp keeps the order parameter essentially unchanged but takes the spin states
{jmæ} to be the approximate eigenstates of the Zeeman Hamiltonian. As described
below, we image the particle density in each of these new eigenstates, accessing the
detailed structure of the monopole established by the creation ramp.

Immediately after the projection ramp, the magnetic field gradient is turned off
in 0.350 ms. The optical trapping beams are then extinguished, releasing the con-
densate from the trap and permitting it to expand freely for 4 ms. The field is then
increased adiabatically (in 1 ms) to 13.7 G in the x direction as Bz is simultaneously
reduced to zero. After a 1.5-ms delay, the magnetic gradient coils are pulsed on for
3.5 ms to 20.1 G cm21 (radial) to separate the spin states horizontally.

The total time of flight of the atoms is 22.9 ms, counted from the moment of
release from the optical trap. After expansion, the condensates are imaged absorp-
tively along both the vertical (z) and horizontal (y) axes simultaneously (to within
14ms) in the presence of a 0.1-G imaging field directed along z. In the absorption
images, we correct for neither the slightly different sensitivities of the different spin
states to the probe beam nor the slightly different expansions that result from the
applied magnetic field gradient.

Although we describe in this paper the creation of the monopole with the initial
parameters bq . 0, Bz(t 5 0) . 0 and _Bzv0, the process yields essentially identical
results experimentally when bq . 0, Bz(t 5 0) , 0 and _Bzw0 in the creation ramp,
except that the field zero enters the condensate along the negative z axis and thereby
changes the sense of the spin rotation. Similarly, Bz can be rapidly increased in
either the 1z or the 2z direction in the projection ramp with the same outcomes
(Extended Data Fig. 2).

The images shown in Figs 2 and 3 are selected from among dozens of similar
images taken under identical conditions, and hundreds of images taken under
similar conditions (Extended Data Fig. 2). Not every image demonstrates the sig-
nature presence of a monopole, because drifts in the magnetic fields and the location
of the optical trap eventually cause the magnetic field zero to miss the condensate.
Under optimal conditions, we find that we can take five to ten sequential images in
which the field zero passes through the condensate, after which we must adjust the
magnetic bias fields to re-centre the magnetic field zero on the condensate.

The first images of pairs of singly quantized vortices that indicate the passage of
the monopole through the condensate were taken on 6 February 2013. Consistent
images of the condensate density distributions associated with the monopole were
first obtained on 1 March 2013.
Numerical simulation. The experimental set-up is simulated by solving the full
three-dimensional Gross–Pitaevskii equation. The simulation parameters are cho-
sen to match those of the experiment, but we include neither the effects of three-
body losses nor the magnetic forces arising from the gradient during the spin state
separation just before imaging. The particle number is held fixed at N 5 1.8 3 105,
corresponding to the initial number of atoms in the experiment. We can roughly
account for the three-body losses by scaling the obtained particle density by the
fraction of atoms that remain at the end of the experiment. Otherwise, the simula-
tions are performed with the time-dependent parameters identical to those used in
the experiment.

The volume considered varies from 20|20|20a3
r to 320|320|320a3

r , where
ar~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=Mvr

p
<0:9 mm is the radial harmonic oscillator length. The size of the

computational grid changes from 180 3 180 3 180 to 1,024 3 1,024 3 1,024 points.
The initial spin-polarized state is obtained with a relaxation method and the tem-
poral evolution is computed using a split-operator technique employing Fourier
transforms for the kinetic energy part. The time required for the computation is
reduced with the help of graphics processing units, coordinate transformations
and an adaptive computational grid.
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Effects of free expansion. The condensate must be allowed to expand freely to
image its spin structure and determine the presence of the monopole. The con-
densate is therefore not imaged while the magnetic field zero is within the con-
densate. To demonstrate the effects of the free expansion on the spin structure, we
show the simulated particle densities of the condensate just after the creation ramp
in Extended Data Fig. 3. The images are created from an intermediate step in the
complete simulation that is used to produce Fig. 2. The principal effects of the
release of the condensate are its expansion with different speeds in different direc-
tions, the increase in the relative vortex core sizes, the partial filling of the vortex

cores with other spinor components, and the slight separation of the different spinor
components. The last three effects are due exclusively to the repulsive interactions
between the atoms during the first few milliseconds of expansion. Because there is
excellent agreement between the simulated and experimentally observed results in
Fig. 3, we conclude that Extended Data Fig. 3 is a suitable representation of the
condensate just after the creation ramp, while the field zero is still within the superfluid.

29. Carroll, G. E. & Hioe, F. T. Further generalization of Landau-Zener calculation.
J. Opt. Soc. Am. B 2, 1355–1360 (1985).
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Extended Data Figure 1 | Decay of the doubly quantized vortex. Images of
the condensate time evolution after moving the magnetic field zero completely
through the condensate. The evolution time is shown at the bottom right of
each panel. The maximum pixel intensity corresponds to a peak column density

~np~1:0|109 cm{2, and the field of view is 246mm 3 246mm. Each image
represents a separate condensate, and _Bz~3 G s{1. After roughly 10 ms the
vortex splits in two, demonstrating the initial 4p phase winding of the nodal
line.
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Extended Data Figure 2 | Additional representative images of Dirac
monopoles. Each row contains images of the same condensate. The maximum
pixel intensity corresponds to ~np~8:2|108 cm{2, and the field of view is
220mm 3 220mm in the vertical images and 285mm 3 285mm in the
horizontal images. The arrow points to the density depletion that is identified as
the nodal line. In a–c, we use the same protocol outlined in the paper: an off-
centre monopole (a); an angled nodal line that is visible in the side image but

not in the vertically directed image (b); and a nodal line that appears to be
splitting into two vortices in the | m 5 21æ component (c). d, An example of a
monopole spin structure in which the creation ramp is as described in the text
but the projection ramp is reversed (that is, Bz is rapidly increased until
Bz=Bz,fj j?1). e, Monopole spin structure created by moving the field zero into

the condensate from below with _Bzw0. The projection ramp is performed as
described in d.
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Extended Data Figure 3 | Numerical simulation of integrated particle
densities before expansion. Vertically (a) and horizontally (b) integrated
particle densities of a condensate just before the projection ramp, with Bz,f

chosen such that the monopole is in the centre of the condensate. The fields
of view are 17.2mm 3 17.2mm (a) and 17.2mm 3 11.4mm (b); in b, it is
reduced in the z direction for a more convenient comparison with the
simulations shown in Fig. 3. The maximum pixel intensity corresponds to
~np~2:98|1011 cm{2.
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